Information Integrity for Automated Vehicles: Localization, Maps and Perception #### Philippe Bonnifait Professor at the Université de Technologie de Compiègne, Alliance Sorbonne Université Heudiasyc UMR 7253 CNRS, France 2nd iLoc Workshop on High-integrity Localization for Automated Vehicles Bilbao, Spain September 24 - 28, 2023 ### **SIVALab** This joint laboratory's research focus is on controlling the integrity of navigation information for ADAS functions and autonomous navigation in intelligent vehicles #### Main focus on - Perception - Localization - Digital maps ### Renault Group # Complex and opened navigation environments Information sources can be severely disturbed ### Information integrity "I prefer not to know where I am than to think I am where I am not " A statement attributed to one of the Cassini brothers, the famous French geographers who first mapped France (16th century) César-François Cassini A high-integrity system is a system that provides erroneous information at a very low rate Integrity monitoring depends on the use of the information and therefore on the navigation tasks to be performed ### Information integrity The integrity problem is due to unavoidable uncertainties associated with the information provided by the sources #### Information has to be - Accurate enough for the tasks to be performed - Available at a sufficiently high rate - Non-misleading and Trustworthy Integrity involves combining and merging data from complementary, diversified and redundant sources - Complementarity for covering all possible situations in a given ODD - Diversification enables the system to adapt to navigation conditions - Redundancy is necessary for fault detection and isolation, and is useful for improving estimation quality ### Bounding errors for autonomous driving 1 The error is correctly bounded. OK! The bound is in the limit \rightarrow use The localization system is unavailable estimated position The error is correctly bounded. OK! The bound is out of the limit Don't use This is a situation of misleading information Worst case scenario that can lead to an accident estimated position The error is **NOT** correctly bounded The bound is in the limit \rightarrow use # Map-aided localization ### Localization Architecture ### Localization with multi-lane camera measurements ### Robust multi-sensor data fusion with FDE and PL computation #### Faults are due to: - GNSS NLOS - Data association errors with the HD map - Errors in georeferenced features J Al Hage, N Salvatico, P Bonnifait, High Integrity Localization of Intelligent Vehicles with Students t Filtering and Fault Exclusion. IEEE ITSC 2023. Session [AGP03] Wednesday 27. 3 PM. ### Map Error Detection #### Map features (always) change They can be modified and they can get damaged Proposed solution: post-processing of multiple drives using smoothing and residuals A Welte, P Xu, P Bonnifait, C Zinoune, HD Map Errors Detection using Smoothing and Multiple Drives, IEEE IV 2021 ### Localization Uncertainty Propagation on Perception Lidar point cloud #### **Detected vehicle** # Perception Uncertainty Propagation ## Map-filtering Input: bounding polygons in the vector map frame - Road objects - Overlapping or uncertain objects - Non road objects ### Lane Grid Map A lane level grid representation of the areas of interest Occupied Vehicle detected by the lidar Free Characterized by lidar points that hit the ground Unknown Ego-vehicle ### Integrity of LGM Predictions #### A predicted LGM is a discretized reachable set | Non reachable | Reachable | | |---------------|-------------|------------| | Free(F) | Occupied(O) | Unknown(U) | | True | Predicted $LGM(t t_0)$ | | |----------|------------------------|--------------------| | LGM(t) | Reach. | Non-reachable | | Occupied | Non-Misleading (1) | Hazardous (2) | | Free | Non-Hazardous (3) | Non-Misleading (4) | C. Sanchez, P Xu, P Bonnifait. Integrity Management of the Reachable Space With Lane Grid Maps IEEE Transactions on Intelligent Vehicles 2022 ### Roundabouts crossing with Integrity Experiments in Rambouillet on roads with opened traffic S Masi, P Xu, P Bonnifait, Roundabout crossing with interval occupancy and virtual instances of road users, IEEE Transactions on Intelligent Transportation Systems. 2021. ### Have a nice iLoc Workshop! #### Philippe Bonnifait Professor at the Université de Technologie de Compiègne, Alliance Sorbonne Université Heudiasyc UMR 7253 CNRS, France Bilbao, Spain September 24 - 28, 2023